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SECTION I

INTRODUCTION

* S
One of the goals of the C/LAMP project is to provide a good

mode of multiple burst phenomenology. In order to do this, it is neces- •

sary to have a corresponding data base. While there have been several

calculations of concentric bursts (References 1, 2, 3) and low yield .

nonconcentric bursts (Reference 4), little has been done for other multi-

ple burst configurations.

The goal of the calculations described in this report is to

expand the data base with calculations of non-concentric bursts with a

higher yield than past calculations (1 megaton), spanning the regime in

which the fireballs are expected to merge, in order to determine the

thermal yield as a function of burst separation.

7

. . .-. .:

-. .. . .....-. o •.p...........



SECTION 11

CALCULATION

In the current calculations MICE was run in its low altitude

mode using 2-D cylindrical geometry in which radiation and hydrodynamic

effects were followed and equilibrium chemistry was used. Hydrodynamic

calculations were done using an implicit continuous Eulerian grid.

Radiation used two approximations with one always dominant in

any given region. In regions of large optical depth, a diffusion approxi-

mation was used, while in regions of small optical depth a free streaming

approximation was used. Both approximations are discussed in detail in

Reference 1.

Finally, in order to simplify the analysis by removing effects 5
which have nothing to do with multiple bursts, the ground was removed and

the atmosphere was allowed to continue smoothly to negative altitudes,

thus removing reflected shocks.

The first burst, which was used in all of the calculations,

was at an altitude of 2 km and, like all of the bursts studied, was of a

generic 1 megaton explosion consisting of 250 kilotons of debris kinetic

energy and 750 kilotons of X-ray deposition energy. In order to save S

time, the development through 0.995 seconds was obtained from a calcula-

tion done in 1982 and described in Reference 1. Since that calculation

included a ground, it was regridded at 0.995 seconds (before the shock

reached the ground) so as to remove the ground.

8-
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In all of the calculations, the second detonation occurred 4

seconds after the first and was identical to the first except for loca-

tion. In this report, all times for calculations involving two bursts are

measured from the time of the second burst. The desired separation was

achieved by displacing the second bursts directly below the first.

Whenever possible, The various calculations will be distinguished by AZ,

t4 the separation distance from the first burst.

P0

m 0
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SECTION III

RESULTS

In all of the cases studied except the concentric case (Az =

0), asymmetries eventually developed due to the interaction of the fire-

balls. The density gradient was so steep at the burst point for the cases

of Az = 0.6 km and Az = 0.7 km, that the initial x-ray deposition was

noticeably asymmetric causing an initial temperature distribution that was

also asymmetric, as can be seen in Figure 1. Bursts with larger Az had a

relatively constant x-ray deposition, but still eventually developed

asymmetries. These asymmetries were due to the variation of shock propa-

gation speeds between the top and bottom of the new fireball when that

fireball became sufficiently large that there was a significant variation

in density due to the first fireball.

Figure 2 shows the fractional thermal yield of the second burst

at 10 seconds as afunction of separation distance. As can be seen, the

radiated energy varies dramatically with separation. For example, at a

separation of 0.6 kin,. the thermal yield is over 50% greater than that of a

single burst - for the concentric case, almost twice. For a separation of

1.2 km, the radiative yield is essentially the same as that radiated by a
O

single burst. As can be seen from the power curves in Figures 3 and 4,

quantities related to the radiated power, such as the power output at

second maximum, varied much more slowly. And, in fact, these were often

within the uncertainty of MICE. Past comparisons with RADFLO calculations
S

have indicated that MICE is better at predicting thermal yield, than the --

- radiated power of any given instant.

10 . . ., . °
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t
Figure 5 shows the thermal yield f P(t') dt', where P is the

0
power radiated. The fireballs from the multiple bursts radiated more -"

energy at later times than did the single burst. This was due to the

larger dimensions of the combined fireball, which increased the average

optical depth. In addition, in all cases the majority of the thermal

yield came from the merged fireball. In all of the non-concentric cases

studied, complete fireball merging occurred between 0.2 and 0.5 seconds -

approximately the time of second thermal maximum.

Figure 6 shows the early rise for some selected cases. As

expected, all of the dual bursts had larger vertical extents than the

single burst case. For bursts with Az > 1.0 km, the passage of the shock

from the second burst caused the first fireball to form a torus and in-

creased the altitude of the top of The combined fireball.

Figures 7 through 54 show the detailed evolution of the six *.-

non-concentric dual bursts. The three quantities which are plotted are

the density, temperature, and the specific power loss due to radiative

cooling. The last quantity is defined as the power loss per gram of

material due to radiation escaping the grid. The power less per gram is

quite sharply peaked, espe(ially when the fireball is opaque. This sharp

gradient can be used to measure the fireball size.

As expected, the fireballs tend to remain spherical during "

their expansion phase as long as the density of the air through which they -..

are expanding does not vary much over the region of the fireball.

" .. . .. :....... ............................. ...-.- ,.........-..- ... . ... -H
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Figures 7 through 12 show the situation at 0.01 seconds, long

before merging. At this time, the fireballs are very symmetrical. Even

those bursts with small Az, which started out with unsymmetrical x-ray

deposition have become more spherical at this time than they were earlier

or will be later.

*

Figures 13 through 18 show the fireballs at 0.1 seconds, immed-

iately before merging and second thermal maximum. The plots of density

(Figures 13 and 14) show how the shocks of the bursts with the smaller AZ

have advanced significantly farther into the first fireball than those

with larger AZ. In none of the cases could the fireballs be said to have

completely merged. The plots for the case with Az = 0.6 km are done with

a different scale than the others.

Figures 19 through 21 show the fireballs at 0.3 seconds. By

this time some of the fireball have completely merged. This is also

approximately the time of second thermal maximum. If the time at which

merging is completed is defined as the time when the shock of the second

fireball reaches the far side of the first, then it appears that the

firehalls at Az = 0.6 and 0.7 km have merged, while the one at Az = 0.8 -

has almost merged. Fireballs with greater separation are well on their

way to completing merging but certainly have not finished the process

yet. All of this is most clearly seen in the temperature plots.

During the second thermal maximun -- between approximately 0.3

and 0.5 seconds -- a cooling wave propagates back th-rough the combined

fireball. Afterwards, the hottest region is at the position of greatest

optical depth -- well within the area originally occupied by the first

fireball.

12
.2S

.................................................-...".....-..."...... '. .° ., "°''.° °. . ".'' ° " °o '." '" "- "," ." °'. Q"' ' "W'o-°" "'w
" °



Figures 25 through 30 show the fireballs at 1.0 second. Again,

the temperature plots (Figures 27-28) give the best picture of merging.

These plots show that by this time all of the fireballs have merged. The

cooling plots (Figures 29-30) show that for separation distances greater

than 1.0 km, there is a torus forming in the region originally occupied by

the first fireball. This is presumably due to the passage of the shock

from the second burst. The region occupied by the second fireball shows

no sign of torus formation. At this time, the density plots (Figures

25-26) show the relative positions of the shocks. The shock from the

second burst has the appearance of coming from the combined fireball,

although it has traveled farther from the new fireball than from the old.

The first shock may appear to be distorted, but this is due to a distor-

tion of the contours arising from the nonuniformity of the ambient atmos-

phere and is not a real effect. -

Figures 31 through 36 show the situation at 2.0 seconds. The -

toruses for those cases with Az of at least 1.0 km have become more obvi- -

ous and can be distinguished on all three plots -- density, temperature,

and radiative cooling.

As Figures 37 through 42 show, the shock toruses for the cases

with Az of at least 1.0 km are well developed by 5.0 seconds. At this

time, the shock from the first burst has left the grid. Since the aim of

this investigation is to study the fireball, no attempt was made to follow

the shock.

Figures 43 through 48 show the situation at 10.0 seconds. At

this time, the shock from the second burst has also left the grid. Those --

fireballs with Az < 1.0 km and the lower portions of the fireballs with

greater separation are showing the early stages of formation of a rise

torus.

13
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Figures 49 through 54 show the fireballs at 20.0 seconds. At

this time, all of the fireballs are rising and have formed toruses. It is

interesting to note that at 20 seconds, the combined fireballs whose top

is at the highest altitude are those which started out with the second

burst at the lowest altitude -- thus giving the largest Az. This was

mentioned earlier in this report and is due to the shock from the second

burst raising the top of the fireball of the first. -

Since in all of the cases studied, the second burst was under-

neath the first, two toruses are not seen as is the case for some of the

dual bursts studied in Reference 4.

COMPARISONS WITH OTHER CALCULATIONS

Taking advantage of the fact that both of the bursts had the

same yield, then if a scaled separation distance is defined as Tz/Y

and scaled separation times as At/Y/ 3  then one of the calculations of

Reference 4 falls between the current calculations as shown in Table 1.

Table 1. Thermal yields from equal non-concentric bursts.

Fractional
/ / Thermal

V AZ At(sec) Az/Y 1 3  At/Y/ 3  Yield

1 MT 1200 4.0 120 0.40 0.37
1 MT 11QO 4.0 110 0.40 0.40
1 MT 1000 4.0 100 0.40 0.46
5 KT* 150 0.8 88 0.47 0.54
I MT 800 4.0 80 0.40 0.60
I MT 700 4.0 70 0.40 0.62
1 MT 600 4.0 60 0.40 0.66

The 5 KT calculation, in which the second burst was displaced below the
first, is from Reference 4.

14
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SECTION IV

CONCLUS IONS

As expected, fractional thermal yield at 10 seconds varies

dramatically as a function of separation distance. For AZ > 1.2 km the

yield is essentially that of a single burst for the 1 megaton case studied

in this investigation. p

Also as expected, the initial energy deposition due to X-rays

was asymmetric when the second burst occurred in a region of rapidly vary- -

ing density. In this investigation, this ocurred for Az near 0.6 km. P

Combined fireballs tend to emit more energy at later times.

This is due to the larger dimensions of the combined fireball, which in

turn increases the average optical depth. In addition, in almost all of p

the cases studied, the majority of the energy is radiated from the combin-

ed fireball. Even for those cases when AZ is large enough that the amount

of radiated energy is the same as that from a single burst, a significant

fraction of the energy is emitted after the fireballs have merged.

For AZ greater than 1.0 km, the passage of the shock from the

second burst causes the first fireball to form a torus and increases the

altitude of the top of the combined fireball. No shock torusing effect is

evident for the cases utilizing smaller Az. .- ..-
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